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Direct integration of generalized Lie symmetries of nonlinear 
Hamiltonian systems with two degrees of freedom: 
integrability and separability 

M Lakshmanan and M Senthil Velan 
Centre far Nonlinear Dynamics, Department of Physics, Bharathidasan University, 
Tiruchirapalli 620 024, India 

Received 18 March 1991, in final form 27 lune I991 

Abstract. Many of the integrable coupled nonlinear oscillator systems are associated with 
generalized Lie symmetries involving velocity dependent terms. For a class of systems with 
two degrees o f  freedom, we show that by integrating the characteristic equation associated 
with the generalized symmetries, the required involutive integrals o f  motion can be obtained 
explicitly in a straightforward manner, almost by inspection and without recourse to 
Noether's theorem. Further, all the separable coordinates can be obtained by integrating 
a subset of the characteristic equation associated with the coordinate variables alone. Our 
explicit examples include the two coupled generalized Henon-Heiles. quartic, sextic and 
other polynomial oscillator systems as well as the perturbed Kepler system. 

1. Introduction 

An important method of identifying nonlinear integrable dynamical systems with finite 
degrees of freedom is through an analysis of the associated invariance properties under 
the one-parameter Lie group of continuous transformations [l-31. However, the stan- 
dard Lie point symmetries for most coupled nonlinear oscillators are either trivial or 
insufficient to establish integrability. One needs to consider more general Lie symmetries 
involving velocity dependent terms, in order to capture the full invariance properties 
[4-61. Considering nonlinear dynamical systems with two degrees of freedom corre- 
sponding to the Lagrangian 

and the Hamiltonian 

the equations of motion 

L=(1 /2 ) (2+32) -  V(x,y) (1 .1)  

H = ( ~ / ~ ) ( P : + P : ) +  V(x, Y )  (1.2) 

can admit generalized Lie symmetries in the 5~ space (f, x, y, x, 3 )  which leave (1.3) 
invariant. The infinitesimal form of such symmetries may be written as 

1 -  T =  t +  E t ( f ,  x, y, x, 3)  
x + x = x +  &?,(I, x, y ,  x, 3)  
y + Y =  y + E ? Z ( f ,  x, Y ,  x, 3 )  
I+ x = X+&(7 j l  -xO 
y +  Y = j + & ( + * - &  E<< 1 .  

(1.4) 
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The resulting invariance conditions are [7] 
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i j - X i - 2 & , =  E { a , )  

i 2 - 3 i - 2 ~ a 2  = E{ a2)  

where the infinitesimal generator of the group is 

(1.5a) 

(1.56) 

(i.6) 

Any solution (6, 7,. v2) of (1.5) forms an admissible set of infinitesimal symmetries 
of (1.3). Methods to find the forms of the infinitesimal symmetries of typical systems 
with two degrees of freedom and locating the integrable choices have been discussed 
in detail elsewhere [4,8,9]. 

After obtaining the infinitesimal symmetries, to prove the integrability of the given 
dynamical system one has to find the required involutive integrals of motion from the 
symmetries, provided they exist. If a given set of symmetries is of Noether’s type then 
it can lead to an integral of motion via Noether’s theorem of the form [7,10,11] 

where f is a function of (x, y, 1 )  to be determined. 
However, in this article we wish to show that the generalized Lie symmetries can 

be used directly to obtain the required information about the integrability and separ- 
ability properties, without recourse to Noether’s theorem, via specific examples by 
solving the first-order linear partial differential equation E{ U) = 0 in five independent 
variables, where U is the local, group, invariant of the one-parameter group of 
transformations. For this purpose we consider the characteristic equation associated 
with the symmetry group (1.6). Out of the four group invariants or essential constants 
admitted by the general solution of E{ U) = 0, two invariants turn out to be nothing 
but the two required involutive integrals of motion of (1.3) to prove its complete 
integrability which can be written down almost by inspection. The explicit determina- 
tion of the remaining two group invariants (which are not connected to the integrals 
of motion) depends on the nature of the symmetry transformation (1.4). However, in 
all our examples they can also be determined in principle straightfowardly. Further, 
separable coordinates, whenever they exist, follow by integrating a subset of the 
characteristic equation associated with the coordinate variables only. We find that 
whenever the symmetry is linear in velocities, the associated subset of the characteristic 
equation corresponding to the coordinate variables becomes a solvable ordinary 
differential equation, while for symmetries which are of higher degree in velocities the 
associated subset becomes non-solvable explicitly. 

In table 1 we summarize the non-trivial generalized symmetries associated with the 
following coupled nonlinear oscillators along with the specific parametric values for 
which the system becomes integrable along with the integrals of motion which will be 
derived by this method. The symmetries of examples (1)-(3) are given in [4,8,9] and 
for the remaining cases they are obtained b y  following <he same method as given in 
these references: 

(1) Coupled quartic oscillator [12]: 

L (1 /2 ) ( i2+ j2) -  [Ax2+ By2+ nx4+py4+  6x2y2] .  (1.8) 
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(2) Henon-Heiles system [13]: 

L = ( 1/2)(X2 + j ’ )  - [ (1/2)( Ax2 + By’) + DX’Y - (1/3) Cy’]. 

(3) Sextic anharmonic oscillator [14]: 

L =  ( 1/2)(x2+9’) - [ A x 2 +  By2+ ax6+py6+ 6,x4y2+ S,x2y4]. 

(4) Perturbed Kepler system [15]: 

1 L = ( 1/2)( x’ + 9’) - [ ( x2 + ;2) 112 + axM + by . 
- 

( 5 )  Inverse square potential [16]: 

L=( l /2) (Xz+jz) -  A ~ ’ + B y ~ + ( x ~ f y ~ ) ~ + _ i + _ ~  , 
X Y  “1 

(6) Non-homogeneous potential [ 171: 

L =  ( 1/2)(X’+j2) - [AxS+ EX’$+ Cxy4+ Dx4+ Ex’y2+ Fy4 

+ Gx’+ Hxy2+ Ix’ + Jy2+ Kx]. 

1263 
I 

I 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

In the above A, E, C, D, E, F, G, H, I, J, K,  M, N, a, p, 6, a and bare constant parameters. 
The plan of the paper is as follows. In section 2 we present the method of constructing 

the invariants by analysing the associated characteristic equation. As an illustration in 
section 3 we apply this method to a specific case of the coupled quartic anharmonic 
oscillator and explicitly demonstrate the method. In section 4 we obtain the separable 
coordinates, whenever they exist, by integrating a subset of the characteristic equation 
corresponding to the coordinate variables for the potentials in table 1. In section 5 we 
give a summary of our results. 

2. Method of constructing invariants 

Let us consider the one-parameter ( E )  Lie group of continuous transformations associ- 
2t.d with the infnitesima! generator E of (1.6). Then the local group invariant 
U( 1, x, y,  x, j )  can be found by solving the first-order linear, homogeneous, partial 
differential equation [I, 21 

JU aU JU au . JU 
at  JX ay Jx JY 

E (  u}=g-+ ’I, -+’I2-+(+, - X i )  - + ( + ‘ - j g )  -=o. (2.1) 

From the classical theory of partial differential equations, we can easily see that 
equation (2.1) admits four functionally independent solutions or group invariants 
U i ( f ,  x, y ,  x, j ) ,  i = 1,2,3,4. These solutions are the four essential constants which 
appear in the general solution of the system of four first-order ordinary differential 
equations 

System (2.2) leads to the following characteristic equation [2] associated with (2.1): 
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To find the function Ui, i =  1 , 2 , 3 , 4  we observe that any tangential direction 
through a point (1, x, y, x, y) to  the surface U,( f, x, y, x ,  3 )  = C,, i = 1,2,3,4 satisfies the 
relation [181 

JLI, JU; au, JU; , Ju, . - df  +- dx + - dy +- dx +- dy = 0 i = 1,2,3,4.  (2.4) 
Jt  Jx JY Jx JY 

If U,( r, x, y, x ,  9 )  = C, is a suitable one-parameter system of surfaces, the tangential 
directions to the integral curves of the characteristic equation (2.3) through the point 
(1, x, y, x, j) are also tangential directions to these surfaces. Hence 

a a ut 
J t  ax ay Jx JY 

(2.5) 
JU, JUi  JU, (-+ 11, -+ v 2  -+ ( e ,  - X i )  -+ ( 7i2-ji) -= 0 i =  1,2,3,4.  

Then to find U, ( i  = 1,2,3,4) ,  we try to find functions P;, Q;, Ri, Si and T. such that 

i = 1 , 2 , 3 , 4  (2.6) CP, + Q~ + 7 2 ~ i  + (l i ,  -  xi)^, + ( l i2  -Yi) T. = o 
with the property 

J U, T, =- 
’ Jx ’ JY Jx JY 

J U, s, =- 
J U, R =- a ut Q =- J U, p =- 

’ J f  

so that 

[P$ dr + Qi dx + R; dy + Si dx + T, d j ]  

is an exact differential du. 
The interesting point here is that for all the systems with two degrees of freedom 

considered in this article, see table 1 with 5 = 0, one can find at least two non-trivial 
group invariants U, and U, straightforwardly which turn out to be nothing but the 
two required involutive integrals of motion. This can be done by choosing the functions 
P,, Q;, Rj, Si and T., i = 1,2 in (2.6) as follows: 

so that U, is the Hamiltonian for all our integrable cases. Similarly 

(ii) P2 = 0 9 2  = - i i  R2=-7j2 

T2=112 

so that U, is the second integral of motion in all the following examples. 
The remaining two group invariants U3 and U, can he obtained as follows: 
(i) Since the infinitesimal 5 is zero in all our cases, the time part of the characteristic 

(ii) Now the remaining part of the characteristic equation 
equation (2.3) separates out as df/O so that the third invariant is just U,= 1. 

can be reduced to an ordinary differential equation (ODE), say in x and y, by eliminating 
the other two variables by using the expressions for the first two invariants U, and 
U,, for example, of the form dx/[g(x, y ) ]  = dy/[h(x, y)], which in general is nonlinear. 



Direct integration of generalized Lie symmetries 1265 

The solution of this ODE gives the required additional group invariant U,. For example, 
for the circularly symmetric cases of a sextic anharmonic oscillator (equation (l.lO), 
case 1) and the perturbed Kepler system (equation (1.11). cases 1 and 4), we have 
dx/y  = dx/-x, leading to U,= (x2+y2).  In other cases this first-order ODE cannot in 
general be explicitly integrated, but in principle its solution is the required group 
invariant. 

3. Application 

The method can be straightforwardly applied to any nonlinear oscillator system with 
two degrees of freedom whose generalized symmetries are known. In particular all the 
systems (1.8)-(1.13) whose symmetries are given in table 1 can be analysed in this 
way. As a specific illustration, we treat below case 1 of the coupled quartic anharmonic 
oscillator system (1.8) explicitly. The two required involutive integrals of motion 
(including the Hamiltonian) of all the remaining cases and systems can be obtained 
by following the same steps with relevant symmetries. 

Example: Coupled quartic anharmonic oscillator 

Case 1. 

L = ( 1/2)(Xz+jz) -[ Ax2+ By2+ ax4+ rry4+2ax2y2] 

Generalized Lie symmetries (see table 1): 

A, B arbitrary (3.1) 

( = O  q 1  = 2y(yX - x j )  + ( 2 / a ) ( B  - A)X 1)2=2x(xj - yX) 

lil = Zy(Xy - x j )  -4( B - A)xy2-8(B- A)x’- (4A/a)(B - A)x 

q2=2X(xj-yX)+4(A-B)x2y 

The characteristic equation is 

d t  d x  - dy 
o zy(~X - ~ j )  + (Z/OI)(B - ~ ) i  - Z X ( X ~  -yX) 
-= 

d x  - - 
2 j ( y X  - x j )  -4(B- A ) [ x y 2 + Z ~ ’ + ( A / ~ ) x I  

- d j  - 
2X(xj-yX)+4(A - B)x2y’ 

(a) First invariant. We choose 

J L  
P, = 0 Q,=---=(2Ax+4ax’+4axy2) 

Jx  

(3.2) 

(3.3) 



1266 

and 

M Lakrhmanan and M Senthil Velan 

Integrating (3.6) we obtain the invariant 

U ,  = ( 1 / 2 ) ( x 2  + j 2 )  + (Ax2 + By2 + ax4  + a y 4  + 2ax2y2) (3.7) 

which is nothing but the Hamiltonian of (3.1). 
(b) Second invariant. Now we choose 

p2 e 6 4’ = -6, = 2 g x j  -$I+ ( :A/nj (B -A)x+ S ( E  -A)X3+4(B -Ajxy2 

Rz = - q 2  = 2 X ( y i  - x j )  +4(B - A ) x 2 y  

Sz 7, 2y(yX - ~ j )  + ( 2 / ~ ) (  B - A ) i  T 2 =  q 2 = 2 x ( x j - y i )  (3.8) 

so that 

$7‘2 + 71 02 + 72R2 + ( + I  - *OS2  + ( $ 2  - j8 )  T2 = 0 (3.9) 

and 

_- a u 2 - o  -- a ” - 2 j (  x j  - y i )  + ( 4 A /  U ) (  B - A)x  + X( B - A ) x 3  + 4( B - A)xy2 
at J X  

auz . . 
(%io) _- a u2 

_- - 2X(yX - x j ) + 4 ( B  -A)x2y  
ay a i  - 2y(yX - X+ j + (21 U ) (  B - A ) x  

Integrating (3.10) we get 

U2 = r2 = ( x j  - Y X ) ~  + ( 2 / a ) (  B - A ) [ ( b 2 / 2 )  + Ax2 + ax4 t U X ~ ~ ~ ]  (3.11) 

which is nothing but the required second involutive integral of motion given in 
table 1. 

As noted in section 2 ,  the third invariant is U, = 1. Further, from the expressions 
(3.7) and (3.11) for U, and U, respectively, two of the variables say i and j can be 
expressed IS fcnctions nf x ar?d y so thzt the chiricteristic en,ua!ion (3.3) can be 
expressed as a highly complicated nonlinear first-order ODE, whose solution is the 
required invariant U,. However, for the circularly symmetric case A = E, the charac- 
teristic equation (3.3) degenerates into 

dx dy 
Y - x  
_ = _  

so that we have the explicit functional form U 4 = ( x 2 + y 2 ) .  
Similar analysis can be carried out to find the invariants for each of the cases in 

table 1 and to obtain the Hamiltonian and the second involutive integral of motion l2 
in the required form. Thus the integrability of all these systems can be proved. 
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4. Separabilit) 

Next we will show that from the generalized symmetries, we can also find suitable 
coordinate systems in which either the equations of motion or the Hamilton-Jacobi 
equation becomes separable, whenever the generalized symmetries are linear in the 
velocities. Since the separability is associated with coordinate transformations, we will 
consider that part of the characteristic equation discussed earlier, namely 

When 9, and 92 are linear in the velocities, the system (4.1) degenerates into an 
ODE which can always be integrated to find the suitable separable coordinates. However 
when 9, and 92 are of higher degree in the velocities then equation (4.1) cannot be 
solved and so no separable coordinates set can be found in general through this 
procedure. 

4.1. Two coupled quartic anharmonic oscillator 

Case 1. From equation (3.3), we have 

(4.2) 
( B - A )  where c2 = -. dx - dy 

2y(Xy - jx)+2c% - 2x(x); - y i )  a 

This can be rewritten as 

x y [ ( ~ ) z - l ] + ( x ~ - y ~ - c ~ )  (3 - =o (4.3) 

which can be readily integrated to give 

( m  + l)(mx2- y2) - mc2 = 0 (4.4) 

where m is an arbitrary constant. Rewriting (4.4) in the elliptical form 

we have the obvious parametrization 

Under this transformation the Hamilton-Jacobi equation 

+2(2A - B ) ( c 4 -  q4) - 2c2A(5’- q 2 ) ] =  E 

is separable [19]. 

(4.6) 

(4.7) 

Case 2. From table 1 we have 

dx dy 
ky !d 
_=- (4.8) 
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or 
dxZ - dyZ = 0 

so that 

x2 - y 2  = constant 

U = x + y  o=x-y .  

leading to the linearly transformed coordinates 

Under this transformation the equation of motion decouples into 

d2u d2u+2Av+4av’ = 0 
dt2 dt2 
-+2Au+4au3 = O  

which can be solved in terms of the Jacobian elliptic function. 

Case 3. From table 1 we have 

dx  dy _=- 
y j  yx-2xj 

which can be written as 

y(dy2 - dx2) + 2~ dx dy = 0 

or 

This can be integrated to give 

y2-2m.- m2=0 m =constant. 

Rewriting (4.16), we have 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Naturaiiy (4.i7) can be parametrized in terms of the paraboiic Coordinates 

x = (1/2)(t2- T 2 )  Y=5T (4.18) 

with which the Hamilton-Jacobi equation becomes separable [20]. 

Case 4. In this case, from table 1 we have 

(4.19) dx dy 
8p(yx-2xj)y3=4j3 + 8 [ B + p y 2 + 6 p x 2 ] y ’ j  - 16Pxy’x 

01 

(4.20) 

Due to the j ‘  ierm in the righthand side of the above, equation (4.iirj cannoi be 
reduced to an ODE as such and so no  separable coordinates can be found in this case. 
One can even make use of the form of H and I ,  to eliminate x and y, and reduce 
(4.20) to an ODE in x and y ,  but such a system is too complicated to be of any practical 
use. 
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4.2. The Henon-Heiles system 

Case 1. From table 1 we have 

dx  dy 
ky ki 
-=_ (4.21) 

which is the same as (4.8). So we obtain the known linear transformation (4.1 1) under 
which the equaton o i  motion becomes separabie. 

Case 2. Now we have 

dy -- dx 
4Dxy - 8Dyx + XAi - 2 Bx - 4Dxx 

so that 

(4A-B) 
2 D  

k =  x( :)'+ ( k  - 2y) - dy - x = 0 
dx  

On integrating (4.23) we have 

2y - k = mx2 - ( 11 m )  

(4.22) 

(4.23) 

(4.24) 

where m is an arbitrary constant, which can be parametrized in terms of the shifted 
parabolic coordinates. 

with which the Hamilton-Jacobi equation becomes separable [ 131 

Case 3. In this case from table 1 we have 

- dy - dx 
4X3+4(A + 2Dy)x2X - (4/3)Dx'P -(4/3)Dx'X 

(4.25) 

(4.26) 

whicn we are unabie to inregrare as such and no separabie coordinaies can be found 
in this case. 

4.3. Sextic anharmonic oscillator 

Case 1. In this case, we have 

dx  - dy 
Zy(yX-x)i) - 2x(xj-yX) 

This can be rewritten as 

x dx + y dy = 0 

(4.27) 

(4.28) 

... L:-L -"- ha :-+a--o+a.4 +- &UP 
W r l l l n l  CO., "C L " L C 6 ' P L L Y  I" 61.' 

x 2 +  y2 = constant. (4.29) 

In this case we can transform the Cartesian coordinates x and y into polar coordinates 
x = p cos e, y = p sin e, in which case the equation of motion becomes separable [Zl]. 
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Case 2. From table 1 we have 
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d x  dy 
ky ki 
_=_  (4.30) 

which readily gives the linear transformation U = x + y ,  U = x - y. Under this transforma- 
tion the equation of motion is itself separable. 

n... ? r_.- ..L1. 4 L 
L U S C  J .  I--r"II, Lk"1T: I wc ,,ti"< 

dx dy 
y j  yx-2xj  

- (4.31) 

Integrating (4.31), we get the parabolic cylindrical coordinates y = fq, x = ( 1/2)(t2 - q 2 )  
in which the Hamilton-Jacobi equation becomes separable as in the case of the quartic 
oscillator [ 191. 

4.4. Perturbed Kepler system 

Case 1. In this case, we have 

(4.32) 

Rearranging and integrating we get the following polar coordinates x = p cos 8, y = 
p sin 0, in which the equation of motion becomes separable [21]. 

Case 2. In this case, we have 

dx du _=- 
y j  yx-2xj '  

(4.33) 

Integrating (4.33), we get the parabolic cylindrical coordinates y = [q, x = 
(1/2)(f2- q2),  in which the Hamilton-Jacobi equation becomes separable. 

Case 3. From table 1 we have 

(4.34) dx dy 
{-(2b/a!yX+[(b/a)x+ y l j )={[ (b /a )x+ ylx-2xy) ' 

Solving (4.34) we get the parabolic coordinates under which the Hamilton-Jacobi 
equation becomes separable [ 151. 

Case 4. From table 1 we have 

dx - dY 
y(yX - x j )  - x ( x j  - y X )  

(4.35) 

Rearranging and integrating we get the polar coordinates x = p cos 8, y = p sin 0, in 
which the equation of motion becomes separable as (4.32) [15]. 

Case 5. From table 1 we have 

dx dy - 
y j  yx-2xy 

(4.36) 

Rearranging and integrating (4.36) we get the parabolic coordinates in which the 
Hamilton-Jacobi equation becomes separable as in (4.33) [15,221. 
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4.5. Inverse square potential 

In this case, we have 

(4.37) 

Rearranging and integrating we get the elliptical coordinates as noted in equation (4.6) 
under which the Hamilton-Jacobi equation becomes separable [ 161. 

4.6. Non-homogeneous potential 

Case 1. From table 1 we have 

(4.38) 

Rearranging and integrating, we get the linear transformation under which the equation 
of motion itself becomes separable. 

Case 2. In this we have 

dx dy 
yy yx-2xy 
_=___ (4.39) 

Rearranging and integrating we get parabolic coordinates in which the Hamilton-Jacobi 
equation becomes separable. 

5. Conclusions 

In this paper we have demonstrated explicitly how to find the integrals of motion 
associated with a given set of dynamical symmetries for nonlinear dynamical systems 
with two degrees of freedom obtained through invariance analysis by direct integration. 
We have also shown that separable coordinates, if they exist, can also he easily found 
by integrating a subset of the symmetries. Thus one can obtain the required integrability 
and separability properties directly through invariance analysis. 

This method can also be extended to 3~ systems in a straightforward manner. In 
general there exist two sets of non-trivial Lie symmetries [23] here. While the first and 
second integrals of motion can be obtained in the same way as in  section 2, suitably 
extended to three degrees of freedom, the third integral of motion can be found as in 
(2.9) hut with the second set of symmetries. The details are presented elsewhere [24]. 

Acknowledgment 

The work has been supported by the Council of Scientific and Industrial Research, 
India through a project grant. 



1272 

References 

M Lakshmanan and M Senthil Velan 

[ I ]  Olver P J 1986 Applications qfLie Groups lo Differential Equations (New York: Springer) 
[2] Bluman G W a n d  Kumei S 1989 Symmetries and Differential Equations (New York Springer) 
[3] Perelomov A M 1990 Integmblc Systems of Classieol Medronics and Lie Algebras (Basel: Birkhiiuser) 
[4] Sahadevan R a n d  Lakshmanan M I986 1. Phys. A: Math. Gen. 19 L949 
[ 5 ]  Cewero J M and Villarroel J 1987 1. Phys. A: Math. Gen. 20 6203 
[6] Tamizhmani K M and Annamalai A 1990 J. Phys. A: Math. Gen. 23 2835 
[7] Lutzky M I979 1. Phys. A :  Moth. Gen. 12 973 
[E] Lakshmanan M I990 Nonlinear Physics, Research Reports in Physics ed Gu Chaohao, Li Yi Shen and 

Tu Guizhans (New York Springer) 
[9] Senthil Velan M and Lakshmanan M I990 Symmetries and Singularity Structures: Integrability and 

Chaos in Nonlinear Dyanmicol Systems Research Reports in Physics ed M Lakshmanan and M Daniel 
(Heidelberg: Springer) 

[IO] Lutzky M 1978 1. Phys. A :  Moth. Gen. I1 249 

[I21 Bountis T C, Segur H and Vivaldi F 1982 Phys. Rea. A 25 1257 
[I)] Wojciechowski S 1984 Phys. Lett. IOOA 277 
[14] Sahadevan R 1986 Painlev6 Analysis and Integrability of Certain Coupled Nonlinear Oscillators FhD 

Thesis University of Madras (unpublished) 
[IS] Yoshida H 1987 Phys. Lett. l20A 388 
[I61 Wojciechawrki S 1985 Physic0 Scripta 31 433 
[17] Hietarinta 1 1983 Phys. Lett. %A 273 
[18] Sneddon I 1957 Elements of Partial Differential Equations (Singapore: McGraw-Hill) 
[19] Lakshmanan M and Sahadevan R 1991 Phys. Rep. submitted 
[ZO] Ankiewicz A and Pask C 1983 J. Phys. A:  Math. Gen. 16 4203 
[ZI]  Landau L D and Lifshtiz E M 1969 Course qfTheoreticn1 Physics Vol I Mechanics (Oxford: Pergamon) 
[22] Dorriui A, Grammaticas B and Ramani A 1983 1. Moth. Phyr. 24 2282; 1984 I Moth. Phys. 25 481 
[23] Lakshmanan M and Sahadevan R 1991 1. Moth. Phys. 32 75 
[24] Lakshmanan M and Senthil Velan M 1992 3. Moth. Phys. submitted 

r l t l  <"Am+ 1" ""A P"....::" c to*> Q r d L "  Do*. 71 46.7 L,., .. (... " -""",,, . .>". I -", 


